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Abs t r ad  The time and spatial correlations of the equilibrium fluctuations in isotropic 
incompressible fluids me studied. The reasoning is based on the example of Brownian motion 
using die memory function formvlhm and the hydrodynamic expression of the Langevin force as 
an integral of the stress tensor fluctuations over the solid panicle surface. Relations lhus obtained 
allow lhe determination of some correlation charaneristics of the svess tensor fluctuations and 
the Langevin force, which depend on both dissipative and thermodynamic parameten. These 
results are in a good apemen1 with the known experimental data from ellipsome@iic stndies of 
spatial correlations of thermal fluctuation capillary waves on gas-simple Liquid interfaces. 

Although the collective fluctuation modes in fluids are well known [ I 4  there is no 
complete description of their time and spatial distributions. The present paper does not 
treat this problem directly but, on the assumption of such distributions, their effects on a 
freely moving macroparticle are studied and some of their mean characteristics are obtained. 
The concept of this analysis is that the Brownian particle does not disturb the medium 
fluctuations but just captures their characteristics. 

The main goal of this paper is to describe in more detail the hydrodynamic fluctuations 
compared with the classical theory, based on the linearized stochastic Landau-Lifshitz 
equation governing the motion of an incompressible fluctuating fluid [S-71: 

p(a /a t )v ( r ,  t )  = -v . P(T, t )  

v . V(r ,  t )  = 0 

P ( r ,  t )  = p ( r ,  811-  p!J[(VV) + (VV)'] + S ( r ,  t ) ,  
- 

Here V is the fluctuating hydrodynamic velocity, P is the stress tensor, p and U are the 
mass density and the kinematic viscosity, respectively, of the fluid, p is the fluctuating 
pressure, I is the unit tensor and S is the random stress tensor, with the following stochastic 
properties: 

( S ( r ,  t ) ) G  = 0 

and 

( S ( r ,  t ) S ( r  + R, t + r ) ) ~  = Z s T p u L S ( t ) S ( R )  

with 

L; E5 BikSjjl + &Sj,  - $SijSk,. 
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In these equations the angular brackets (.)c denote averages over an equilibrium canonical 
Gibbs ensemble with temperature T ,  and kB is the Boltzmann constant. 

A known shortcoming of the classical model is that infinite local dispersions of the 
fluctuating hydrodynamic quantities such as (VV),, (PP), and (SS), are obtained which 
is valid for both compressible and incompressible fluids [1,31. This occurs for two reasons. 
The first is the simplified modelling of the dissipation in the classical hydrodynamic 
model, which affects the time dependence of the hydrodynamic fluctuation correlations 
[ 1.21. The second reason is the use of the classical fluctuation-dissipation theorem [2,3,8] 
which is strongly related to the equilibrium canonical Gibbs distribution, to obtain the 
statistical properties of the random stress tensor. The canonical distribution is not applicable 
to fluctuations in small systems since the terms accounting for the system-thermostat 
interactions are neglected [3,4]. For the correct description of such fluctuations (particularly 
the local hydrodynamic fluctuations) it is necessary to extend the classical fluctuation theory 
[ 1-41 by taking into account the significant influence of the dissipative interactions on these 
objects [9]. 

A convenient way to study the hydrodynamic fluctuations is their application to 
Brownian motion. It has been theoretically shown by Langevin 1101 that the interaction 
of the medium with a macroparticle can be represented by two forces: a frictional force, 
linked with the concept of the fluid hydrodynamic viscous resistance [6], and a driving 
force, most commonly called a Langevin force which reflects the stochastic nature of the 
collisions. The momentum balance of the motion according to this description has the form 
of the generalized Langevin equation [ l ,  8,111 

M(d/dt)U(t) +G(f)U = F ( f )  

R Tsekov and B Radoev 

(1) 

where M and U are the mass and velocity, respectively, of the Brownian particle, GU is 
the frictional force and F is the Langevin force. In the present paper the angular brackets 
(.) denote averages over the real equilibrium distribution, which could be different from the 
Gibbs canonical distribution for the reasons mentioned above. 

Because of the common molecular-kinetic origin of the two ad hoc intmduced forces 
GU and F, they are not independent. Their link, called by Kubo [SI the second fluctuation- 
dissipation theorem, was formulated most generally by Mori [ I l l  and Zwanzig [12]: 

(F( t ) )  = 0 

G(t)U = (ksT)-* C ~ p ( t  - ti) . U(t1)dtl (2) l 
where 

C F F ( ~ )  = (F( t )F( t  + r)) 
is the Langevin force autocorrelation function (LFACF) and the temperature is introduced via 
the relation 

M(UU) = kBTI. 

The operator G is proportional to the friction coefficient p.  The relationship between G and 
p follows from the long-term limit of (2) and is given by the well known relation [1,2,8] 
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When the frictional force GU is approximated by gU. the LFACF tends to 2k~Tg16(r) (see 
(2)). 

In the traditional statistical mechanical treatments the GV + fiU transition is analysed 
on the microscopic level as a function of the ratio of the mass A4 of a Brownian particle to 
the mass m of the particles in the environment. It is  shown in the mass point approximation 
[1,2] that G ( m / M  + 0)U + gU. For objects of finite, sufficiently large size, with a 
macroscopically averaged interaction with the surrounding medium, the order of magnitude 
of the mass m cannot be that of the mass of the fluid microparticles 1131. The magnitude 
of m should be determined by the order of the mass gf the fluid displaced by the particle, 
m - p ~ R i  with Rp being the radius of the Brownian particle. This can be demonskated 
on the basis of the classical result for the Laplace transform (hereafter denoted by a tilde 
0 of the LFACF [13-161: 

which is obtained by means of the Landau-Lifshitz model [14-161. Here the friction 
coefficient ,3 is equal to 6rrpuRP. Equation (4) shows again the inconsistency of the model 
discussed above, resulting in the divergence of the dispersion of the random force and a 
wrong result for the dispersion of the Brownian particle velocity: 

(U U) = 3ksT/ (M + ?pnR; ) .  

This is easy to explain since these results present an incorrect extension of a formula valid 
for small s to derive quantities related mainly to the highest s-value. 

From the hydrodynamic point of view [15,16], the force F in (1) is the sum of the 
normal projections of the fluctuating part of the stress tensor AP = P - (P)u upon the 
Brownian particle: 

where the integration is carried out along the particle surface S,. The s m s  tensor (P)v 
comprises the equilibrium stress tensor of the fluid (P) and the perturbation caused by the 
Brownian particle and determines the drag force GU. It represents the mean value of the 
stress tensor P averaged along the coordinates and momenta of the fluid particles without 
averaging along the coordinates and the momentum of the Brownian particle and, owing to 
the random nature of the Brownian motion, it is also a random quantity with a mean value 

According to (3, the mean value of the Langevin force ( F )  is equal to zero. Its 
autocorrelation function CFF is the first characteristic which is sensitive to the scale of 
stress tensor fluctuations A P  and, using (5). it takes the form 

C F F ( r ) = /  /” n.(AP(Rpn,t)AP(Rpnl,t+~)) . n l d S d S ~ .  (6) 

(P). 

s, so 

To arrive at (6), one uses the fact that in the fully linearized scheme the time dependence of 
R(t) is negligible and that the origin of the coordinate may be assumed to be in the centre 
of the Brownian particle [16]. 
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In equilibrium homogeneous systems the fluctuations are described as stationaq and 
uniform processes [1-4], which justifies expressing the stress tensor autocorrelation as 

Cpp(R, r )  = (AP(, ,  t ) A P ( v  + R, f + r ) )  = ( A P A P ) C ( R / L ,  r /b)  (7) 

where T,  is the correlation time and IC is the correlation length. The direct substitution of 
Cpp from (7) into (6) elucidates the link between the LFACF and the strcss tensor fluctuations 
A P  

C F F ( T )  = al:S,(AP * A P ) f ( r / r c ;  R p / l J .  (8) 

In order to determine the dispersion ( A P  . A P ) ,  reflecting the order of the magnitude 
of the LFACF, the equilibrium fluctuation amplitudes of the stress tensor fluctuations ( A P ) ,  
in a macroscopic volume V >> d: could be used. At constant p and T the only source of 
the fluid fluctuations is the non-uniform distribution of the fluid particle velocities and for 
this reason the variance ((AP), . (AP)") of equilibrium stress tensor fluctuations can be 
expressed as follows [3,17]: 

keTpc2 
V ( ( A P ) ,  . (AP)") = ( A P ( v , t ) .  AP(rl , t ) )drdrr = - I. 

The equilibrium canonical Gibbs distribution is used to obtain this last equation since 
V >> alz, and c is the Maxwell velocity of the fluid particles. When the autocorrelation 
function Cpp of the stress tensor fluctuations given by (7) is replaced in this result, 
the following expression for the variance of the stress tensor fluctuations is obtained: 
(AP . A P )  - k ~ T p c 2 / ( r r l ~ ) l .  By substituting it in (8) the LFACF takes the form 

CFF(S) - k e T d s p r J L l f ( s r c ;  &/id. (9) 

The dependence of r, and I ,  on the parameters of the medium can be obtained from 
& by a power expansion of (9): 

~ F F ( S )  - k ~ T p c ~ S ~ ~ ~ / L l [ ~ +  A & + k r c  t ... I 
where it is supposed that 

f , ( R p / L )  = ( I / 4 [ a " f ( u 2 ;  R p l L ) / a u " l . ~  

are finite. The LFACF should contain as a limit the classical result (4) at small src, when 
classical hydrodynamics are valid. Comparison of these equations leads to the following 
expressions for the correlation time T,  and correlation length 1,: 

5, .., (~/c2)I(L/Rp)/.hl - v/c2 ( l o a )  

[TI (lob) 1, - @[AI - (CT~)' ( l C / R p ) f z  - v / c .  

The expressions in square brackets in (10) must be constants because rc and I ,  are 
characteristics of the medium and should not depend on Rp. Note that f (r/rc; R p / l c )  
depends on R, since it represents an integral of the stress tensor autocorrelation over the 

~ 
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Brownian particle surface. According to (lo), T, and 1, are functions of the dissipative and 
non-dissipative parameters and are proportional to the mean free time and path [9]. 

One could obtain the same results [9] if I ,  is considered as the distance at which the 
perturbation AP would spread for the time T~ ( I ,  - ~ 7 ~ )  and if the time of persistence of 
the perturbation tC is interpreted as a characteristic which reflects the loss of correlation as 
a result of viscous friction (1: -  UT^). It is notable that these results are in good ageement 
with the experimental data from the known ellipsometric investigations of spatial correlations 
of fluctuation capillary waves on simple gas-liquid interfaces [9]. 

New results also derived are the finite values of the variance of the stress tensor 
fluctuations (AP . AP) * k B ~ p c 5 / ( x ~ 3 ) i  and of the Langevin force (FF)  - 
kBT,dp(C3/v)f(o; Rpc/u)I which depend on the kinematic viscosity of the fluid. In the 
case when Rp >>le it follows from (8) that f(& Rpc /v )  - 1. 

According to the present work the dynamics of the stress tensor fluctuations in the bulk 
at constant p and T are analogous to a pure deformation field with a correlation length 
1, - u/c and a correlation time T, - u/c2. The classical description of the hydrodynamic 
fluctuations follows from the present theory in the limit of infinite thermal velocity of the 
fluid particles c at finite kinematic viscosity U. As noted in the introduction, the Landau- 
Lifshitz model is directly related to the canonical Gibbs distribution. The limit c + 00 at 
finite U is equivalent to neglecting the dissipative interactions between the system and the 
thermostat with respect to the system's kinetic energy, and the equilibrium distribution of 
the system can be approximated by a canonical distribution function [3,4]. 

The physical nature of the viscous-diisipative correlation as a self-organisation smcture 
could be elucidated by means of the laws of the local turbulence [3,6]. In 1941, Oboukhov 
and Kolmogorov established a characteristic length 1 of the small-scale turbulence, below 
which the motion is laminar. The size of these turbulent subdomains obeys the relation 
l4 - u3/w,  where w is the local power (per unit mass) of the dissipation of energy as 
viscous friction. Because of stationarity, the power w has to be equal to that of the external 
sources. In the description of fluctuations the thermal molecular motion plays the role of 
'external' source and w could be estimated as w - E / T ,  E and T being the specific energy 
of the thermal motion and the excitation time of the fluctuations, respectively. Because of 
stationarity, the characteristic time T of the source has to be equal to the mean relaxation 
time 12/v of the energy dissipation. From this point of view the Oboukhov-Kolmogorov 
law has the alternative expression E - (u / l ) ' .  Since the specific energy of the thermal 
motion of molecules is proportional to their mean square velocity, i.e. E - c2, the size and 
lifetime of the fluctuations are estimated from this law as 1 - u/c and T - u/c2, i.e. they 
are identical with the correlation length 1, and time T~ obtained above in (10). 
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